The Impact on the Performance of Co-running Virtual
Machines in a Virtualized Environment

Gildo Torres
Clarkson University
8 Clarkson Ave
Potsdam, New York
torresg@clarkson.edu

ABSTRACT

The success of cloud computing technologies heavily depends
on the underlying hardware as well as the system software
support for virtualization. As hardware resources become
more abundant with each technology generation, the com-
plexity of managing the resources of computing systems has
increased dramatically. Past research has demonstrated that
contention for shared resources in modern multi-core multi-
threaded microprocessors (MMMP) can lead to poor and
unpredictable performance. In this paper we conduct a per-
formance degradation study targeting virtualized environ-
ment. Firstly, we present our findings of the possible im-
pact on the performance of virtual machines (VMs) when
managed by the default Linux scheduler as regular host pro-
cesses. Secondly, we study how the performance of virtual
machines can be affected by different ways of co-scheduling
at the host level. Finally, we conduct a correlation study in
which we strive to determine which hardware event(s) can
be used to identify performance degradation of the VMs
and the applications running within. Our experimental re-
sults show that if not managed carefully, the performance
degradation of individual VMs can be as high as 135%. We
believe that low-level hardware information collected at run-
time can be used to assist the host scheduler in managing
co-running virtual machines in order to alleviate contention
for resources, therefore reducing performance degradation
of individual VMs as well as improving the overall system
throughput.

Keywords

Cloud Computing; Virtual Machine Management; Kernel
Virtual Machine; Hardware Performance Counters

1. INTRODUCTION

Not so long ago, hardware resources were deemed scarce
in the era of single-core microprocessors. Managing such
resources for multi-programming systems was tasked with
distributing the limited CPU time among multiple running

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ARMS-CC’16, July 29 2016, Chicago, IL, USA
© 2016 ACM. ISBN 978-1-4503-4227-8/16/07... . $15.00
DOL: http://dx.doi.org/10.1145/2962564.2962573

Chen Liu
Clarkson University
8 Clarkson Ave
Potsdam, New York
cliu@clarkson.edu

threads. At the time, efforts were mainly aimed at balanc-
ing each thread’s progress while maintaining priorities and
enforcing fairness. One of the key factors that architects
relied on for achieving better performance, along with inno-
vative architectural improvements, was to increase the speed
of the clock. In recent years, however, power-thermal issues
have limited the pace at which processor frequency can be
increased. In an effort to utilize the abundant transistor
real estate available, and at the same time to contain the
power-thermal issues, current developments in microproces-
sor design favor increasing core counts over frequency scaling
to improve processor performance and energy efficiency.

As a result, chip multi-processors (CMPs) have been es-
tablished as the dominant architecture employed by modern
microprocessor design. Integrating multiple cores on a chip
and multiple threads in a core adds new dimensions to the
task of managing available hardware resources. In so-called
multi-core multi-threading microprocessors (MMMPs), con-
tention for shared hardware resources becomes a big chal-
lenge. For the scheduling algorithms used by the operating
system (OS) in multi-core computing platforms, the primary
strategy for distributing threads among cores is load balanc-
ing, for example, symmetric multiprocessing (SMP). The
scheduling policy tries to balance the ready-to-run threads
across available resources with the objective of ensuring a
fair distribution of CPU time by minimizing the idling as
well as avoiding the overloading of the cores. Threads com-
pete for the computation and memory resources if they are
sharing the same core; if they are running on separate cores,
they will contest for the Last Level Cache (LLC), memory
bus or interconnects, DRAM controllers and pre-fetchers if
sharing the same die [21]. Previous studies [3, 6, 17, 15, 12,
20, 11, 10] have shown that contention on shared hardware
resources affects the execution time of co-running threads
and the memory bandwidth available to them.

The other side of the story is the flourish of the cloud com-
puting technology. Cloud computing, facilitated by hard-
ware virtualization technologies (e.g., Intel-VT and AMD-
V) and CMP architectures, has become pervasive and has
transformed the way enterprises deploy and manage their I'T
infrastructures. Common services provided through cloud
computing include infrastructure as a service (IaaS), plat-
form as a service (PaaS), and software as a service (SaaS),
among others. It provides the foundation for a truly agile
enterprise, so that IT can deliver an infrastructure that is
flexible, scalable, and most importantly, economical through
efficient resource utilization [16].

Virtualization offers users the illusion that their remote

machine is running the operating system of their interest
on its own dedicated hardware. However, underneath that
illusion is a completely different reality, where different OS
images (Virtual Machines) from different users are running
concurrently on the same physical server. Because a sin-
gle Virtual Machine (VM) normally will not fully utilize the
hardware resources available on MMMPs, multiple VMs are
put on the MMMP platforms to be executed simultaneously
so as to improve the overall resource utilization on the cloud
side. Aggregately, this means boosting the system through-
put in terms of the total number of VMs supported by the
cloud service provider (CSP) and even reducing the energy
cost of CSP’s infrastructure by consolidating the VMs and
turning off the resources that are not being used.

Co-running VMs, however, are not exempted from con-
tention on shared resources in MMMPs. Similar to the
thread scenario, VMs would compete for the computation,
memory, and I/O resources. Their performance directly de-
pends on which VMs are put together side by side on the
same core. If not managed carefully, this contention can
cause a significant performance degradation of the VMs,
against the original motivation for co-locating them together.

Traditionally, load balancing of MMMPs have been un-
der the purview of the OS scheduler. This is still the case
in cloud environments that use hosted virtualization such
as the Kernel Virtual Machine (KVM) [13]. In the case
of bare-metal virtualization, the scheduler is implemented
as part of the Virtual Machine Monitor (VMM, a.k.a. hy-
pervisor). Regardless of where the scheduler resides, the
scheduler tries to evenly balance the workload among ex-
isting cores. Normally, these workloads are processes and
threads, but in a cloud environment they also include en-
tire virtual machines’. On top of that, the VMs (and the
processes/threads within them) exhibit different behaviors
at different times during their lifetimes, sometimes being
computation-intensive, sometimes being memory-intensive,
sometimes being I/O intensive, and other times following a
mixed behavior. The fundamental challenge is the semantic
gap, i.e., the hypervisor is unaware of the runtime behav-
ior of the concurrent VMs and the potential contention on
processor resources they caused herein, and lacks the mech-
anism to act correspondingly.

In this work we present a performance degradation study
targeting a virtualized environment. Firstly, we present our
findings of the possible impact on the performance of vir-
tual machines when managed by the default Linux sched-
uler as regular host processes. Secondly, we study how the
performance of virtual machines and the applications run-
ning within them can be affected by different ways of co-
scheduling at the host level. Finally, we conduct a corre-
lation study where we strive to determine which hardware
events can be used at runtime to identify the performance
degradation of the virtual machines as well as the applica-
tions running inside.

2. BACKGROUND

In this section, we include a brief description of the default
virtual machine monitor architecture as well as hardware
performance counters.

'Here what we are referring to is the host scheduler; each
virtual machine will run its own guest OS, with its own guest
scheduler managing its own processes and threads.

2.1 Virtual Machine Monitor

In a virtualized environment, the hypervisor is responsi-
ble for creating and managing the virtual machines. In this
work we use the Kernel Virtual Machine (KVM) hypervi-
sor. KVM [13] is a full virtualization solution for Linux that
can run unmodified guest images. It has been included in
the mainline Linux kernel since version 2.6.20 and is imple-
mented as a loadable kernel module that converts the Linux
kernel into a bare metal hypervisor. KVM relies on hard-
ware (CPUs) containing virtualization extensions like Intel
VT-X or AMD-V, leveraging those features to virtualize the
CPU.

In KVM architecture, the VMs are mapped to regular
Linux processes (i.e., QEMU processes) and are scheduled
by the standard Linux scheduler. This allows KVM to bene-
fit from all the features of the Linux kernel such as memory
management, hardware device drivers, etc. Device emula-
tion is handled by QEMU. It provides emulated BIOS, PCI
bus, USB bus and a standard set of devices such as IDE and
SCSI disk controllers, network cards, etc. [16].

2.2 Hardware Performance Counters

Hardware performance counters (HPCs) are special hard-
ware registers available on most modern processors. These
registers can be used to count the number of occurrences of
certain types of hardware events, as well as occurrences of
specific signals related to the processor’s function, such as
instructions executed, cache-misses suffered, branches mis-
predicted, etc. These hardware events are counted at native
execution speed, without slowing down the kernel or appli-
cations because they use dedicated hardware that does not
incur additional overhead. Although originally implemented
for purposes such as debugging hardware designs during de-
velopment, identifying bottlenecks and tuning performance
in program execution, nowadays they are widely used for
gathering runtime information of programs and performance
analysis [18, 2].

The types and number of available events that can be
tracked, as well as the methodologies for using these hard-
ware counters, vary widely not only across architectures, but
also across systems sharing the same Instruction Set Archi-
tecture (ISA). In recent years, microprocessor manufactur-
ers have increased coverage, accuracy, and documentation
of their hardware counters, making them more useful and
accessible than when they were originally introduced. For
example, Intel’s most modern processors offer over four hun-
dred different events that can be monitored [9, 7]. Therefore,
it is up to the programmer to select which hardware event(s)
to monitor and set the configuration registers appropriately.

3. CONFIGURATION

This section describes the hardware and software plat-
form, as well as the benchmark suite we used in this study.

Platform: The experiments were conducted on a host
machine powered by an Intel Core i7 950 (Nehalem, Quad-
Core, HT, 3.06GHz) processor with 8GB of memory.

Host OS: Ubuntu 13.04 (64-bit) with Linux kernel 3.8.0.

Hypervisor: Kernel-based Virtual Machine (KVM) 3.8.0.

Guest OS: Xubuntu 12.04 (32-bit) with Linux kernel
3.2.0.

Benchmarks and Workloads: In this study all the
benchmarks we used are from the SPEC CPU2006 suite [8]

Table 1: Benchmarks used in this study

Benchmark | Type | Lang. | Description
gee INT C C Compiler
gobmk INT C Artificial Intelligence
mcf INT C Combinatorial Optimization
gamess FP Fortran Quantum Chemistry
gromacs FP C, Fortran | Molecular Dynamics
Ibm FP C Fluid Dynamics
milc FP C Quantum Chromodynamics
namd FP C++ Molecular Dynamics
povray FP C++ Image Ray-tracing
soplex FP C++ Linear Programming
sphinx3 FP C Speech recognition
stream FP (@] Memory bandwidth

Table 2: Application within each VM for the migration ex-
periment.

VM | Benchmark

VM_0 soplex
VM_1 soplex
VM_2 sphinx3
VM_3 sphinx3
VM_4 gamess
VML_5 gamess
VM_6 namd
VM_7 namd

to construct different types of workloads for the VMs, ex-
cept stream[14]. The SPEC CPU 2006 suite provides a wide
range of benchmarks developed from real user applications
that stress different aspects of the hardware resources of a
computing system. The stream benchmark is a simple syn-
thetic benchmark program that measures sustainable mem-
ory bandwidth and the corresponding computation rate for
simple vector kernels [14]. Table 1 lists the benchmarks we
use to construct the virtual machine workloads.

4. OS MIGRATION STUDY

The integration of the kernel component of KVM with
mainline Linux allowed KVM to take advantage of many of
the kernel features, including the scheduler. This approach
helps simplifying the scheduling task. Different from a regu-
lar host workload consisting of native processes and threads
only, however, workloads in a cloud environment also include
virtual machines as processes; but the default Linux sched-
uler balances resources and time among host processes and
VMs without differentiation. As a result, the scheduler may
force virtual machines to migrate among cores indiscrimi-
nately while attempting to balance the workload within a
cloud environment, therefore incurring potential overhead.

Here we present a simple experiment aimed at illustrating
the indiscriminate migrations experienced by the co-running
virtual machines on a virtualized environment and the po-
tential performance implications. In this experiment, we
recorded the affinity of eight virtual machines while man-
aged by the default Linux scheduler on the Intel Core i7
platform. Each virtual machine was running its own bench-
mark inside, as illustrated in Table 2.

Figures 1 and 2 show the migration pattern experienced
by the VMs during an arbitrary time lapse of approximately
one minute of their execution. Both figures capture the same
execution; they differ by representing the VM migrations

Default OS scheduler VM Migration (Logical cores)
7 I
6

ll iy
s

I R

Affinity (0 to 7)

2542 2552 2562 72 2582 259 2602 12
Time

Figure 1: Default OS scheduler migration of VMs across
eight logical cores

Default OS scheduler VM Migration (Physical cores)

vM_7
VM_6

—VM_S
—Vvm_a
—VMm_3

vm_2

Affinity (0 to 3)

1 w U
o ‘

2502 2552 2562 572 2582 2592 2602 2612
Time

Figure 2: Default OS scheduler migration of VMs across four
physical cores

across logical cores or physical cores. Figure 1 shows the
migration across all eight logical cores. On the other hand,
Figure 2 only represents the migrations across physical cores
(four physical cores in this case, as every two logical cores
share one physical core based on hyper-threading technol-
ogy). In other words, the migrations across sibling logical
cores due to hyper-threading are not represented in Figure
2. Considering all logical cores in Figure 1, there are a total
of 1066 VM migrations in this example across logical core
boundary. However, if we consider the scenario captured in
Figure 2, there are a total of 219 migrations among all VMs
across physical core boundary.

Looking beyond the total number of changes in affinity,
Figures 1 and 2 show how each VM behaves differently:
some VMs exhibit relatively “stable” behavior, e.g., VM_T;
while others appear more “unstable” as they bounce among
cores more frequently, e.g., VM_2. This number of migra-
tions across cores might not have the same implications for a
regular process or thread as that for a virtual machine, from
a performance point of view. Because of the extra layer (vir-
tualization) inherent to the VM, the memory penalty, and
therefore performance toll, paid by a virtual machine would
be higher than that of a native process running in the host
platform.

In addition to the excessive number of migrations of vir-
tual machines across cores, Figures 1 and 2 also show how
the default Linux scheduler sometimes co-locates more than
one VM on some cores, while leaving some other cores with-
out hosting any VMs. This behavior can also affect the
performance of the VMs by increasing the contention for
resources within the over-loaded cores, leaving some cores
under-utilized on the other hand.

Overall, before we specifically determine how much degra-
dation the studied VMs experienced, the purpose of this
particular example is to illustrate some of the most relevant

Runtime Degradation Relative to solo

80
< 70
X Workload A Workload B
c 60
= 50 — N W
S 40 — N W
o mam EIN BN T
& 30
o 20 i — N
10 11 I N -
WO L F O G D T P L GO R
S SEF L e " SEE A S
i . S . ' .
SET N S T sl Lo g ot
LX) N\ O 5N =S o) A ST (5 2
ST FEG T LT G i O

Figure 3: Performance degradation compared to running solo across two sets of workloads

Table 3: Workload composition I

Workload | Benchmarks
A soplex™ milct gromacs® sjeng*
B soplex™ sphinx3* gamess* namd*

+ Denotes relatively high number of last-level cache misses.
* Denotes relatively low number of last-level cache misses.

factors that could affect performance of VMs when man-
aged by the default Linux scheduler and treated as regular
processes on the host.

S. DEGRADATION STUDY

Not only has past research demonstrated that contention
for shared resources in MMMPs can lead to poor and un-
predictable performance, but also they studied and identi-
fied which shared resources affected performance the most
on their studied architectures [19, 20, 21, 4, 5, 22, 1, 11].
Most of these studies focused on non-virtual environments
running native threads. In this study we focus on how the
performance of virtual machines and the applications run-
ning within them can be affected by different co-scheduling
schemes. We attempt to answer the following questions:
Does co-scheduling affect the performance of virtual machines
in a similar way that it does for native applications? And if
so0, by how much?

In these experiments, we test two different workloads sep-
arately (i.e., A and B). Each workload is composed of four
VMs, with each VM running its own benchmark as shown
in Table 3. The benchmark itself is the only active applica-
tion, other than the default system services, run by the guest
OS inside each VM. The workloads include both memory-
intensive and CPU-intensive benchmarks. Here we consider
memory-intensive benchmarks as those having a high num-
ber of last-level cache (LLC) misses, while CPU-intensive
benchmarks as those showing low numbers of LLC misses.

Each workload was executed using four logical cores, orig-
inated from two physical cores with hyper-threading, with
one VM per logical core and every two logical cores sharing
the same L2 cache. There are three different ways to map
the four VMs across the four cores with respect to how to
pair the co-running VMs sharing the L2-cache domain.

Figure 3 shows the normalized performance degradation
suffered by each VM relative to running solo? calculated as
follows:

Perf_Deg — <e:cec,time — exec_time_solo

-) x 100%
exec_time_solo

Each entry in Figure 3 represents the individual degrada-
tion of the VM running the first benchmark when co-located
with the VM running the second benchmark, e.g., the first
entry (soplez - milc) represents the degradation experienced
by soplex VM when co-located with milc VM, while the last
entry (namd - gamess) represents the degradation suffered
by namd VM when co-located with gamess VM.

Results shown in Figure 3 evidence that applications run-
ning within VMs are sensitive to the co-scheduling of VMs
in the host platform, with individual behaviors showing re-
markable differences. It shows not only which VMs are more
sensitive to interference, but also which VMs are more likely
to disturb other VMs.

Overall, for Workload A, VMs running soplez and sjeng
appear to have the greatest impact on VMs running other
benchmarks when sharing the same L2-cache domain. On
the other hand, VMs running milc and soplex show higher
immunity to interference, being less affected by sharing re-
sources with other VMs. Among all four VMs, gromacs VM
appears as the most sensitive one, experiencing the largest
performance degradation compared to running solo. Inter-
estingly, sopler and sjeng are actually different types of
applications, with sopler being a floating point memory-
intensive benchmark, while sjeng being an integer CPU-
intensive benchmark.

For Workload B, VMs running soplez and namd appear
as the ones having the greatest impact on other VMs. Sim-
ilar to Workload A, these two VMs are somehow different
in terms of their number of LLC misses, with soplex being
memory-intensive while namd being CPU-intensive, respec-
tively. Both soplex and namd are floating point benchmarks.

As the next step, on a more extensive study, we tested
thirteen different workloads following a similar methodology
as the one discussed above. Each workload was composed
of four virtual machines running one benchmark each, as
shown in Table 4.

%We refer to running solo as the benchmark running in a
VM with no interference from other VMs.

wu
o

135

N
w

N
o

B Worst Individual VM
M Workload Average

w
w

w
o

N
[6;]

[
o un

Degradation (%)
S

&

&\')’ $& &\P‘ QA\?) $\§ q&\:\ \‘g\g’ &\9 @\'\’Q \‘A\}\' $\,‘\'1’ \‘&\"\?,

Figure 4: Performance degradation of benchmarks within different workloads

Figure 4 presents two metrics to characterize the perfor-
mance degradation experienced by the studied workloads.
First, it presents the worst performance degradation ex-
perienced by individual VMs within each workload. Sec-
ond, it shows the average performance degradation of all
VMs for each workload. The individual VMs’ performance
degradation values are only considered within each work-
load, and are calculated relative to the best execution time
of each VM within the workload. For example, if the ex-
ecution times of the mc¢f VM within Workload 1 were 10,
11, and 15 seconds for the three possible co-location map-
pings within that workload, then its performance degrada-
tion for all three mappings within that particular workload
would be 0%, 10%, and 50%, respectively; and the average
degradation and worst degradation would be 20% and 50%,
respectively. These values would only be relevant to the mcf
VM of Workload 1 (WL1).

As it can be seen, the average VM performance degra-
dation across workloads ranges from 1% to 15%, with an
arithmetic mean of 6% and a geometric mean of 4.2%. On
the other hand, Figure 4 illustrates how significant the indi-
vidual VM degradation is within a workload. It shows how
the worst individual VM degradation across all workloads
varies between 5% and 135%, with an arithmetic mean of
32.6% and a geometric mean of 18.2%. The VM that experi-

Table 4: Workload composition II

Workload | Benchmarks
WL1 mcf Ibm gce gamess
WL2 mcf gce gamess milc
WL3 gce gamess milc stream
WL4 mcf Ibm milc stream
WL5 mcf Ibm milc gee
WL6 gamess gromacs soplex sphinx3
WL7 gamess gobmk mcf soplex
WL8 gamess gce mcf povray
WL9 gamess gce mcf milc
WL10 gamess gromacs soplex sphinx3
WL11 gamess gobmk mcf soplex
WL12 gamess gce mcf povray
WL13 gamess gce sphinx3 stream

enced the worst individual degradation was the one running
sphinx3 when co-located with the gromacs VM as part of
Workload 6 (WL6).

For all experiments, the execution time of each benchmark
was recorded from the host system using the Linux time
command. Overall, we noticed that for most cases, the (user
+ system) total time was not as different as the real time
reported. This indicates that, even though each benchmark
running inside a VM was not affected from the point of view
of its guest virtual machine, the contention for resources
among the virtual machines within the host system greatly
affected the final execution time of such benchmarks.

Overall, Figures 3 and 4 present consistent results. Not
only do they show that co-scheduling has a direct impact
on the performance of virtual machines, but it is also clear
that different VMs have different sensitivity to interference
and therefore degradation depending on their computing de-
mand nature and the VMs they are sharing resources with.
Furthermore, combining the behavior evidenced in this sec-
tion with what we observed in Section 4, we can conclude
that contention for resources among co-running virtual ma-
chines in a virtualized environment has a great impact on
the performance of applications running inside the VMs.

6. CORRELATION STUDY

After studying the performance impact among co-running
VMs, in this section we present a study of the correlation
between the performance degradation experienced by co-
running VMs and different hardware events. We try to dis-
tinguish which hardware events can be used at runtime to
identify potential performance degradation of the applica-
tions running inside the virtual machines.

As part of our study, we profiled the execution of eleven
VMs, each one running a different benchmark within (so-
plex, milc, mcf, lbm, gcc, sphinz, gobmk, gromacs, povray,
gamess, stream). Each VM is co-located with another VM
executing an interfering benchmark. As the interfering bench-
marks, we used milc (mix CPU/memory-intensive) and stre-
am (memory-intensive). The reason for selecting these two
as the interfering benchmarks is to expose the studied VMs
to different types of interfering behaviors.

Table 5: Recorded Hardware Events

Event Name | Description

L1 Level 1 D-Cache misses
L2 Level 2 Cache misses
LLC Last Level Cache misses
DTLB DTLB-misses
1C Instructions executed
Clk_c Core clock cycles
Clk_r Reference clock cycles

We ran each one of the eleven individual VMs one at a
time while recording the hardware events shown in Table
5, where IC, Clk_c and Clk_r are system default events and
L1, L2, LLC and DTLB misses are configurable hardware
events. We repeated each experiment three times, once run-
ning solo and twice with each interference VM of milc and
stream, separately. All experiments were conducted with
pre-fetching off and hyper-threading enabled. Similar to the
degradation studies presented in Section 5, the performance
degradation experienced by each VM was calculated relative
to running solo (no interference case).

Table 6 presents the correlation among all hardware events
and the performance degradation suffered by the studied
VMs. These values represent an average of the correlations
across all VMs. It can be observed that the highest corre-
lation to performance degradation is shown by both events
related to clock cycles (e.g., Clk_c and Clk_r). Since the ex-
periments are run on the same platform running at the same
frequency, the prolonged execution time naturally leads to
the extended number of clock cycles for the VM.

In addition, we also see a strong correlation between the
change in instruction count (IC) and the performance degra-
dation of the VM. This indicates that under the interfer-
ence scenario, the total number of instructions executed by
the VM, even running the same workload, also varies. We
strongly suspect this behavior is due to the contention for
hardware resources between the VM under monitoring and
the interfering VM causes them to be scheduled in (VM EN-
TRY) and out (VM EXIT) by the host system more often
than if they were executing alone, causing an increase in in-
struction count for the entire VM. Further experiments will
be conducted to verify this.

Table 6: Correlation between performance degradation and
hardware events

Events | Deg* L1 L2 LLC DTLB IC Clkec

Clk_r 0.96 0.54 0.05 0.07 0.01 0.89 0.99
Clk_c 0.97 0.55 0.02 0.05 0.03 0.91
1C 096 059 0.15 0.11 0.12
DTLB 0.12 0.19 0.03 0.14
LLC 0.03 0.12 0.66
L2 0.07 0.10
L1 0.58

* Performance degradation in terms of execution time.

Another interesting observation is the very low correlation
that exists between the different levels of the memory hierar-
chy. We believe this is at least partially due to the hardware
architecture used in this study. Intel Nehalem architecture
has a cache structure where the first two levels are not inclu-
sive (L2 cache does not necessarily contain all lines existing
within L1 cache), and therefore misses in L1 may not directly

affect L2. In this architecture the last level cache (LLC) is
inclusive of both upper levels, hence requests that miss the
first level (L1) can be redirected to the last level (LLC),
bypassing the second level cache (L2). Even though the
correlation between L1 D-Cache miss and the performance
degradation is at 0.58 when the pre-fetching was turned off.
When we turned it back on, the correlation between L1 and
the performance degradation decreased significantly while
a significant increase in the correlation among the different
levels of cache was observed.

7. CONCLUSIONS

In this work, we conducted an empirical study to deter-
mine the performance degradation suffered by virtual ma-
chines when managed by the default Linux scheduler as reg-
ular host processes on modern multi-core multi-threaded mi-
croprocessors (MMMP). Our experiments showed that the
default Linux scheduler not only migrates the virtual ma-
chines often, but also arbitrarily co-schedules them to run
on the same physical core. Experimental results showed the
potential degradation of performance that could be experi-
enced by the virtual machines.

Secondly, our study not only showed that co-scheduling
affects the performance of virtual machines, but also made
clear that different VMs have different sensitivity to inter-
ference and therefore degradation depending on their com-
puting demand nature and the virtual machines they are
sharing resources with. Our experiments show that if not
managed carefully, the performance degradation of individ-
ual VMs can be as high as 135%. It can be concluded that
contention for resources among co-running virtual machines
in a virtualized environment have a great impact on the
performance of the VMs as well as the applications running
inside them.

Our final set of experiments studied the potential correla-
tion that may exist between certain hardware events and the
performance degradation experienced by benchmarks run-
ning within the virtual machines. As a result, we believe
that low-level hardware information collected at runtime
can be used to assist the host scheduler in managing co-
running virtual machines in order to alleviate contention for
resources, therefore reducing the performance degradation
of individual VMs as well as improving the overall system
throughput.

As future work, an immediate step is to study more hard-
ware events and their correlation to the performance degra-
dation of the VMs. We also plan to include virtual machines
that use multiple cores. For this study we instrumented a
module within the KVM hypervisor for collecting HPC mea-
surements at runtime. As the next stage, we plan to extend
this framework to assist the OS scheduler into managing
virtual machines and native processes in order to mitigate
contention for shared resources and therefore reduce the im-
pact on the performance.

8. ACKNOWLEDGMENT

This work was in part supported by the National Sci-
ence Foundation under Grant Number ECCS-1301953. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

[11]

[12]

REFERENCES

Dulcardo Arteaga, Ming Zhao, Chen Liu, Pollawat
Thanarungroj, and Lichen Weng. Cooperative virtual
machine scheduling on multi-core multi-threading
systems - a feasibility study. Workshop on Micro
Architectural Support for Virtualization, Data Center
Computing, and Cloud, 2010.

Shibdas Bandyopadhyay. A study on performance
monitoring counters in x86-architecture. Technical
report, Indian Statistical Institute, 2010.

Sergey Blagodurov, Sergey Zhuravlev, and Alexandra
Fedorova. Contention-aware scheduling on multicore
systems. ACM Trans. Comput. Syst., 28(4):8:1-8:45,
December 2010.

F.J. Cazorla, P. M W Knijnenburg, R. Sakellariou,
E. Fernandez, A. Ramirez, and M. Valero. Predictable
performance in smt processors: synergy between the
os and smts. Computers, IEEE Transactions on,
55(7):785-799, 2006.

Hsiang-Yun Cheng, Chung-Hsiang Lin, Jian Li, and
Chia-Lin Yang. Memory latency reduction via thread
throttling. In Microarchitecture (MICRO), 2010 43rd
Annual IEEE/ACM International Symposium on,
pages 53—-64, 2010.

Sangyeun Cho and Lei Jin. Managing distributed,
shared 12 caches through os-level page allocation. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 39, pages 455-468, Washington, DC, USA,
2006. IEEE Computer Society.

John Demme and Simha Sethumadhavan. Rapid
identification of architectural bottlenecks via precise
event counting. In Proceedings of the 38th Annual
International Symposium on Computer Architecture,
ISCA ’11, pages 353-364, New York, NY, USA, 2011.
ACM.

John L. Henning. Spec cpu2006 benchmark
descriptions. SIGARCH Comput. Archit. News,
34(4):1-17, September 2006.

Intel. Intel 64 and ia-32 architectures software
developer manual. Technical report, Intel, 2013.

S. Jasmine Madonna, Satish Kumar Sadasivam, and
Prathiba Kumar. Adaptive Resource Management and
Scheduling for Cloud Computing: Second International
Workshop, ARMS-CC 2015, Held in Conjunction with
ACM Symposium on Principles of Distributed
Computing, PODC 2015, Donostia-San Sebastidn,
Spain, July 20, 2015, Revised Selected Papers, chapter
Bandwidth-Aware Resource Optimization for SMT
Processors, pages 49-59. Springer International
Publishing, Cham, 2015.

R. Knauerhase, P. Brett, B. Hohlt, Tong Li, and

S. Hahn. Using os observations to improve
performance in multicore systems. Micro, IEEE,
28(3):54-66, 2008.

Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

Xiaodong Zhang, and P. Sadayappan. Gaining insights
into multicore cache partitioning: Bridging the gap
between simulation and real systems. In High
Performance Computer Architecture, 2008. HPCA
2008. IEEE 14th International Symposium on, pages
367-378, Feb 2008.

Kernel Based Virtual Machine.
http://www.linux-kvm.org/.

John D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19-25,
December 1995.

Moinuddin K. Qureshi and Yale N. Patt. Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO 39, pages 423-432, Washington, DC, USA,
2006. IEEE Computer Society.

Inc. Red Hat. Kernel based virtual machine. Technical
report, Red Hat, Inc., 2009.

David K. Tam, Reza Azimi, Livio B. Soares, and
Michael Stumm. Rapidmrec: Approximating 12 miss
rate curves on commodity systems for online
optimizations. In Proceedings of the 14th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIV,
pages 121-132, New York, NY, USA, 2009. ACM.
V.M. Weaver and S.A. McKee. Can hardware
performance counters be trusted? In Workload
Characterization, 2008. IISWC 2008. IEEE
International Symposium on, pages 141-150, 2008.
Lichen Weng and Chen Liu. On better performance
from scheduling threads according to resource
demands in mmmp. In Parallel Processing Workshops
(ICPPW), 2010 39th International Conference on,
pages 339-345, 2010.

Lichen Weng, Chen Liu, and Jean-Luc Gaudiot.
Scheduling optimization in multicore multithreaded
microprocessors through dynamic modeling. In
Proceedings of the ACM International Conference on
Computing Frontiers, CF 13, pages 5:1-5:10, New
York, NY, USA, 2013. ACM.

Sergey Zhuravlev, Sergey Blagodurov, and Alexandra
Fedorova. Addressing shared resource contention in
multicore processors via scheduling. In Proceedings of
the Fifteenth Edition of Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XV, pages 129-142, New York, NY, USA,
2010. ACM.

Sergey Zhuravlev, Juan Carlos Saez, Sergey
Blagodurov, Alexandra Fedorova, and Manuel Prieto.
Survey of scheduling techniques for addressing shared
resources in multicore processors. ACM Comput.
Surv., 45(1):4:1-4:28, December 2012.

